SIEMENS

ICs for Communications

Quad ISDN Echocancellation Circuit Analogue Front End Quad IEC AFE

PEB 24902 Version 1.1 PEF 24902 Version 1.1

PEB 24902 Revision History $\quad \mathbf{5 . 9 6}$	
Previous Releases: 2.96	
p. $21 / 22$	PLL characteristics
p. $24 / 25$	Description of ADC and table 5, ADC
p. 26	Fig. 10
p. 28	Description of DAC

Edition 5.96

This edition was realized using the software system FrameMaker ${ }^{\circledR}$.
Published by Siemens AG,
Bereich Halbleiter, Marketing-
Kommunikation, Balanstraße 73, 81541 München
${ }^{\circ}$ Siemens AG 1995.
All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.
Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components ${ }^{1}$ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems ${ }^{2}$ with the express written approval of the Semiconductor Group of Siemens AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
Table of Contents Page
1 Overview 5
1.1 Features 6
1.2 Logic Symbol 7
1.3 Functional Block Diagram 8
1.4 Pin Configuration 9
1.5 Pin Definitions and Functions 10
2 System Integration 15
2.1 Line Card Application 15
2.2 NT Application 18
3 Technical Description 19
3.1 Clock Generation 19
3.1.1 Specification of the PLL and the 15.36 MHz Master Clock (Pin CL15) 19
3.1.2 Specification of the Crystal 22
3.2 Analogue Line Port 23
3.2.1 Analogue-to-Digital Converter 24
3.2.2 Range Function 26
3.2.3 Digital-to-Analogue Converter 26
3.2.4 External Hybrid and Transformer Parameters 29
3.2.5 Analogue Loop-back Function 31
3.2.6 Level Detect 32
3.2.7 Power down 33
3.2.8 Power-on-Reset 33
3.2.9 Reset 33
$3.3 \quad$ Digital Interface 33
3.3.1 Frame structure on the Digital Interface in the 2B1Q Mode 35
3.3.2 Frame structure on the Digital Interface in the 4B3T mode 36
3.3.3 Propagation Delay in transmit direction 37
3.4 NT-Mode Operation 37
3.5 Boundary Scan Test Controller 39
4 Digital Interface 42
4.1 Static Requirements 42
4.2 Dynamic Requirements 43
4.3 Boundary Scan Timing 44
5 Power Supply 46
5.1 Supply Voltages 46
5.2 Power Consumption 46
6 Maximum ratings 47
6.1 Line Overload Protection 47
Table of Contents Page
7 Environmental Requirements 49
7.1 Storage and Transportation 49
7.2 Operating Ambient 49
7.3 Thermal Contact Resitance 49
8 Package Outlines 50

1 Overview

The PEB 24902 Quad IEC AFE (Quadruple ISDN Echocancellation Circuit Analogue Front End) is part of a 2B1Q or 4B3T ISDN U-transceiver chip set. Up to four lines can be accessed simultaneously by the Quad IEC AFE. The Quad IEC AFE is optimized to work in conjunction with the PEB 24901 Quad IEC DFE-T and the PEB 24911 Quad IEC DFE-Q. An integrated PLL synchronizes the 15.36 MHz Master clock onto the 8 kHz or 2048 kHz PTT Clock. This specification describes the functionality for 2B1Q and 4B3T interfaces.

SIEMENS

Quad ISDN Echocancellation Circuit Analogue Front End Quad IEC AFE

PEB 24902

Version 1.1

CMOS

1.1 Features

- Digital to Analogue conversion (transmit pulse)
- Output buffering
- Analogue to digital conversion
- Detection of signal on the line
- Master clock generation by PLL
- P-MQFP-64 Package
- Compliant to ANSI T1. 601 (1992), ETSI ETR 080 (1995)
- JTAG boundary scan path compliant to IEEE 1149.1

1.2 Logic Symbol

Figure 1

Logic Symbol

1.3 Functional Block Diagram

Figure 2

Block Diagram of the Quad IEC AFE

1.4 Pin Configuration

Figure 3
Pin Configuration
(top view)

Overview

1.5 Pin Definitions and Functions

The following tables group the pins according to their functions. They include pin name, pin number, type, a brief description of the function and cross-references referring to the sections in which the pin functions are discussed.

Table 1

Pin Definitions and Functions

Pin No.	Symbol	Input (I) Output (O)	Description	Reference

Power Supply Pins

37	$\begin{aligned} & \mathrm{VDD}_{\mathrm{d} 1} \\ & \mathrm{VDD}_{\mathrm{d} 2} \end{aligned}$		$5 \mathrm{~V}+/-5 \%$ digital supply voltage	5.1
11				
34	$V_{D} D_{1}$ $V_{D D}{ }_{a}$ $V_{D D}$ $V_{D D}$		$5 \mathrm{~V}+/-5 \%$ analogue supply voltage	5.1
15				
46				
3				
42	$\begin{aligned} & \mathrm{GND}_{\mathrm{d} 1} \\ & \mathrm{GND}_{\mathrm{d} 2} \end{aligned}$		OV digital	5.1
6				
32	$\begin{aligned} & \mathrm{GND}_{\mathrm{a} 1} \\ & \mathrm{GND}_{\mathrm{a} 2} \\ & \mathrm{GND}_{\mathrm{a} 3} \\ & \mathrm{GND}_{\mathrm{a} 4} \end{aligned}$		OV analogue	5.1
17				
49				
64				
30	VREF_{1}	I/O	VREF pin to Buffer internally generated voltage with capacitor 100 nF vs. GND	2
19	VREF_{2}	I/O	VREF pin to Buffer internally generated voltage with capacitor 100 nF vs. GND	2
51	VREF_{3}	I/O	VREF pin to Buffer internally generated voltage with capacitor 100 nF vs. GND	2

Table 1
Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Description	Reference
62	VREF $_{4}$	I/O	VREF pin to Buffer internally generated voltage with capacitor. 100 nF vs. GND	2

JTAG Boundary Scan

57	TCK	I	Test Clock.	$3.5,4.3$
58	TMS	I	Test Mode Select, internal pullup.	$3.5,4.3$
55	TDI	I	Test Data Input, internal pullup.	$3.5,4.3$
56	TDO	O	Test Data Output.	$3.5,4.3$
59	TDISS	I	JTAG Boundary Scan Disable, active low, internal pullup.	3.5

Line Port Pins

29	AIN1	I	Differential U interface input. Line port 1	3.2 .1
28	BIN1	I	Differential U interface input. Line port 1	3.2 .1
33	AOUT1	O	Differential U interface output. Line port 1	3.2 .3
36	BOUT1	O	Differential U interface output. Line port 1	3.2 .3
20	AIN2	I	Differential U interface input. Line port 2	3.2 .1
21	BIN2	I	Differential U interface input. Line port 2	3.2 .1
16	AOUT2	O	Differential U interface output. Line port 2	3.2 .3
13	BOUT2	O	Differential U interface output. Line port 2	3.2 .3
52	AIN3	I	Differential U interface input. Line port 3	3.2 .1

Overview
Table 1
Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Description	Reference
53	BIN3	I	Differential U interface input. Line port 3	3.2 .1
47	AOUT3	O	Differential U interface output. Line port 3	3.2 .3
44	BOUT3	O	Differential U interface output. Line port 3	3.2 .3
61	AIN4	I	Differential U interface input. Line port 4	3.2 .1
60	BIN4	I	Differential U interface input. Line port 4	3.2 .1
2	AOUT4	O	Differential U interface output. Line port 4	3.2 .3
5	BOUT4	O	Differential U interface output. Line port 4	3.2 .3

Digital Interface

7	CL15	I/O	Master Clock 15.36 MHz. All operations and the data exchange on the digital interface are based on this clock. If a 15.36 MHz clock is generated by the internal PLL/ oscillator or if an external clock is provided at XIN then CL15 issues this clock. If the pin XIN is clamped to low or high then CL15 is input and an other device has to provide the 15.36 MHz clock.	$3.1 .1,4.2$
38	PDM1	O	Pulse density modulated output of the second-order sigma-delta ADC of line port 1	$3.2 .1,4.2$
39	PDM2	O	Pulse density modulated output of the second-order sigma-delta ADC of line port 2	$3.2 .1,4.2$

Table 1
Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Input (I) Output (0)	Description	Reference
40	PDM3	O	Pulse density modulated output of the second-order sigma-delta ADC of line port 3	3.2.1, 4.2
8	PDM4	0	Pulse density modulated output of the second-order sigma-delta ADC of line port 4.	3.2.1, 4.2
31	XDN1	I	Input for Transmit data in NT mode. Not used in LT-Mode. Internal pulldown.	3.4
18	XDN2	I	Input for Transmit data in NT mode. Not used in LT-Mode. Internal pulldown.	3.4
50	XDN3	I	Input for Transmit data in NT mode. Not used in LT-Mode. Internal pulldown.	3.4
63	XDN4	I	Input for Transmit data in NT mode. Not used in LT-Mode. Internal pulldown.	3.4
24	SDX	I	Interface for the transmit and control data. Up to eight lines can be multiplexed on SDX. Transmission and sampling is based on clock CL15 (15,36 MBit/sec): For each line port the following bits are exchanged: TD0, TD1, TD2: Transmit data RANGE: Range select LOOP: Analogue loop back switch PDOW: Power down/power up NT: NT-Mode or LT-Mode Synchronization information	3.3, 4.2
41	SDR	0	Level information for the detection of the awake tone. The four lines are multiplexed on SDR.	3.3, 4.2

Table 1
Pin Definitions and Functions (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Description	Reference
27	ADDR	I	Select the assignment of time slots and line ports.	3.3
23	CODE	I	Select 2B1Q or 4B3T code. Code $=$ low sets 2B1Q Code.	$3.3,3.2 .3$
25	RES	I	Reset and power down of the entire IEC Quad AFE including PLL and all four line ports. Asynchronous signal, active low.	3.2 .9

PLL

9	XOUT	O	Crystal out. 15.36 MHz crystal is connected. Leave open if not used.	3.1 .2
10	XIN	I	Crystal in. External 15.36 MHz clock signal or 15.36 MHz crystal is connected. Clamping XIN to either low or high sets CL15 to Input.	$3.1,3.1 .2$
26	CLOCK	I	8 kHz or 2048 kHz clock as a time base of the 15.36 MHz clock.Connect to GND if not used.	3.1
22	PLLF	I	Select corner frequency of PLL Jitter Transfer function. Internal pullup resistor.	3.1

System Integration

2 System Integration

The Quad IEC AFE is optimized for line modules in the central office or access networks (LT function) together with the PEB 24901 Quad IEC DFE-T for 4B3T code or the PEB 24911 Quad IEC DFE-Q for 2B1Q code. Application in the multi channel NT function together with the PEB 24911 Quad IEC DFE-Q V2.1 is supported. The PEB 24911 Quad IEC DFE-Q is footprint compatible to the PEB 24901 Quad IEC DFE-T. This way, one board layout can be used for both line codes simply by putting the appropriate DFE.

2.1 Line Card Application

The Quad IEC AFE is controlled via the signal at pin SDX. The transmit data is transferred the same way. Data on SDX is organized such that two Quad IEC AFE devices can share the same signal.
The Quad IEC AFE can transmit either 2B1Q-data or 4B3T-data. Setting the pin CODE to low will result in 2B1Q code. For 4B3T code the pin CODE has to be tied to VDD.
Each of the four line ports is biased by a separate voltage reference. This internal reference voltage has to be decoupled by a capacitor of 100 nF connected to the VREFx pin and GND.
The 15.36 MHz master clock is generated with a crystal oscillator and synchronized onto the PTT clock with an integrated PLL. Fig. 4 shows a 4 channel LT application for 2B1Q line code. Note, that the PEB 24911 Quad IEC DFE-Q is footprint compatible to the PEB 24901 Quad IEC DFE-T. This way, one board layout can be used for both linecodes simply by putting the appropriate DFE.

Figure 4

4 channel LT application

System Integration

An 8 channel LT is built with two AFE/DFE sets. One Quad IEC AFE generates the master clock for all four devices. The PLL in the other Quad IEC AFE is passive.

Figure 5
8 channel LT application
Figure 6 gives an overview of an 8 channel linecard.

Figure 6 8 channel LT application (overview)

System Integration

2.2 NT Application

The NT-Mode is supported together with the Quad IEC DFE-Q V2.1. In this application the serial interface SDX does only carry control information. The transmit data is transferred from the Quad IEC DFE-Q V2.1 to the Quad IEC AFE asynchronously on all four ports via the pins XDN1..4. The PLL of the Quad IEC AFE is used to synchronize the crystal frequency onto the received signal of the U-interfaces. Operation of all four ports is synchronized individually onto the receive signal from the line by a digital PLL in the Quad IEC DFE-Q.

Figure 7
4 channel NT application

3 Technical Description

3.1 Clock Generation

All timing signals are derived from a 15.36 MHz system clock. The 15.36 MHz clock can be provided by the Quad IEC AFE by a crystal-based PLL, which is synchronized to either an 8 kHz or a 2048 kHz clock at pin CLOCK. The frequency at pin CLOCK is detected automatically.
The 15.36 MHz clock can also be provided externally at pin CL15 without making use of the internal PLL. In this mode the pin XIN must be tied to either VDD or GND. An internal power-on-reset circuitry assures that the pin CL15 is an input until a 15.36 MHz clock is detected at the output of the PLL/oscillator.

3.1.1 Specification of the PLL and the 15.36 MHz Master Clock (Pin CL15)

The PLL is based on a crystal connected to the pins XIN and XOUT. For synchronization of the 15.36 MHz clock up to 16 internal capacitances are connected to XIN and XOUT.
The loop filter of the PLL is of second order, therefore a sinusoidal input jitter with the angular frequency $\omega=2 \pi f$ at CLOCK is amplified by the PLL according to the following formula:

$$
H(j \omega)=\frac{\frac{2 \delta}{\omega_{\mathrm{r}}} j \omega+1}{\left(\frac{\mathrm{j} \omega}{\omega_{\mathrm{r}}}\right)^{2}+\frac{2 \delta}{\omega_{\mathrm{r}}} j \omega+1}
$$

$\mathrm{H}(\mathrm{j} \omega)$ is the complex jitter transfer factor $\omega_{r}=2 \pi f_{r}$ is the angular resonance-frequency of the PLL δ is the damping factor of the PLL
The maximum phase difference between the external CLOCK and the internal reference, derived from the master clock, due to a sinusoidal input jitter with the angular frequency ω is given as $1-\mathrm{H}(\mathrm{j} \omega)$. The magnitude of the jitter transfer function and of the phase difference are illustrated below:

Figure 8 Jitter Transfer Gain in dB

Figure 9

Maximum Phase Difference Due to Sinusoidal Input Jitter

If the input signal at pin CLOCK disappears being stuck to high or low, the PLL continues to generate the CL15 clock. In this case the PLL keeps the last setting. The accuracy of the frequency of CL15 degenerates in the long term only due to changes in temperature and ageing.

The resonance frequency can be set to two different values using the pin PLLF. PLLF tied to low sets the PLL to a low resonance frequency suited for applications in the Access Network. PLLF tied to high or left open results in a higher resonance frequency for accelerated synchronization. The PLLF pin has an internal pull-up resistor.
The PLL automatically determines whether the frequency at pin CLOCK is 8 kHz or 2048 kHz.

Table 2

PLL Characteristcs

Parameter	Limit Values			Unit
	min.	typ.	max.	
f_{r} resonance frequency, PLLF $=$ low	1.2	1.5	1.8	Hz
f_{r} resonance frequency, PLLF = high	7	8	9	Hz
Damping factor	0.7	0.9	1.2	
$\mathrm{H}_{\text {max }}$ maximum jitter amplification	0.9	1.45	2.2	dB
Synchronization time of the PLL after power on and applying the reference at pin CLOCK, PLLF = low			8	sec
Synchronization time of the PLL after power on and applying the reference at pin CLOCK, PLLF = high			1	sec
Output Jitter at CL15 without any jitter in the CLOCK signal (peak-to-peak); jitter frequency $>800 \mathrm{~Hz}$			2	ns
Output Jitter at CL15 with-out any jitter in the CLOCK signal (peak-to-peak) jitter frequency $<20 \mathrm{~Hz}$			80	ns
Initial accuracy after the loss of the reference clock at CLOCK			0.5	ppm
Initial accuracy after power on	-50		50	ppm

Table 2
PLL Characteristcs (cont'd)

Parameter	Limit Values			Unit
	min.	typ.	max.	
Start-up time of the Oscillator with the crystal suggested below.	0.5	1	ms	
Input capacitance at XIN and XOUT	3		15	pF
Output current at XOUT during start-up		0.5	1	mA
Output current at XOUT after synchronization	0.5	1	mA	

Table 3
PLL Input Requirements

Parameter	Limit Values			Unit
	min.	typ.	max.	
Accuracy of the reference at CLOCK to enable synchronization	-150	0	+150	ppm
Peak-to peak Jitter of the CLOCK signal during any 125 μ sec period			70	ns
Peak-to-peak voltage of a sinusoidal external master clock provided at XIN	3.3			V pp
Low time of the reference at CLOCK	130			ns
High time of the reference at CLOCK	130		ns	
Pulse width of the 15 MHz clock	26		39	ns

3.1.2 Specification of the Crystal

A crystal (serial resonance) has to be connected to XIN and XOUT which shall meet the following specification:

Table 4
Specification of the crystal

Parameter	Min	Typ	Max	Units
Nominal frequency		15.360000		MHz
Total frequency range	-150		+150	ppm
Operating frequency $\mathrm{C}_{\text {Load }}=15 \mathrm{pF}$ $\mathrm{C}_{\text {Load }}=7 \mathrm{pF}$	15.35770 -		-	MHz
Current		1	2	mA
Load capacitance	9.8		10.2	pF
Overall tolerance $\Delta \mathrm{f} / \mathrm{f}$			60	ppm
Resonance resistance R_{r}		20		Ohm
Shunt capacitance C_{0}			7	pF
Motional capacitance C_{1}	25		pF	
Overall Pullability	+-210			ppm

Note that the load capacitors are integrated in the PEB 24902. No additional capacitance has to be connected neither to XIN nor to XOUT. The crystal specifications shall meet the requirements given in table 4.
A suitable type of crystal would be:
Vibrator:

Mode of vibration	DS	fundamental
Crystal cut	ATI	

3.2 Analogue Line Port

The Quad IEC AFE Chip gives access to four line ports. The signal to be transmitted is issued differentially at pins AOUT1..4 and BOUT1..4. The input is differentially sampled at AIN1.. 4 and BIN1..4. Each line port consists of three main function blocks:

- the analogue-to-digital converter in the receive path
- the digital-to-analogue converter in the transmit path
- the output buffer in the transmit path

Furthermore a line port contains some special functions. These are:

- analogue test loop-back
- level detect function

3.2.1 Analogue-to-Digital Converter

A first order low pass anti alias filter is provided at the input of the ADC. The ADC is a sigma-delta modulator of second order using a clock rate of 15.36 MHz . During normal operation the ADC evaluates the signal at AINx and BINx. The ADC evaluates the signal at AOUTx and BOUTx while the analogue loop-back is activated.
The maximum peak input voltage between AINx and BINx is defined as the minimum input voltage that results in a continuous series of high or low at the PDMx pin. A larger input signal will be clipped. An increasing positive voltage at AINx - BINx will result in an increasing number of high states at the PDMx pin. Hence, the maximum positive voltage at AINx-BINx results in a series of high whereas the maximum negative voltage results in a series of low. The average percentage of high states obtained with a given input voltage is referred to as gain of the ADC. It is expressed in \%/Volt. The ADC offset is the difference in \% from the ideal 50% high states with no input signal, transferred back to the input voltage using the ADC gain.
The maximum signal to noise ratio is achieved by signals of approximately 65% of the maximum peak input signal voltage. The signal to noise ratio is evaluated with a digital third order low pass filter applied to the digital data stream. The filter transfer function zeroes are at $80 \mathrm{kHz}, 80 \mathrm{kHz}$ and 160 kHz .
Table 5
Specified Data of the Analogue-to-Digital Converter

Parameter	Limit Values			Unit	Test Condition
	min.	typ.	max.		
Signal/Noise (sine wave 1.5 Vpp between AINx/BINx)	70	72		dB	range function deacti- vated, all line ports sending random 2B1Q pattern into 98Ω load
Signal/(Noise+ Distortion) (sine wave 0.4 Vpp between AINx/BINx)	59.5	61.5		dB	range function deacti- vated, all line ports sending random 2B1Q pattern into 98Ω load
Signal/(Noise+Distortion) (sine wave 1.5 Vpp between	65	68		dB	range function deactivated
AINx/BINx)					dB
Signal/(Noise+Distortion) (sine wave 2.0 Vpp between function deactivated					
AINx/BINx)	60				
Signal/(Noise + Distortion) (sine wave 3 Vpp between AINx/	60			dB	range function activated
BINx)					

Table 5
Specified Data of the Analogue-to-Digital Converter (cont'd)

Parameter	Limit Values			Unit	Test Condition
	min.	typ.	max.		
Signal/Noise (sine wave 3 Vpp between AINx/ BINx)	65	68		dB	range function activated, all line ports sending random 2B1Q pattern into 98Ω load
Signal/(Noise + Distortion) (sine wave 4 Vpp between AINx/ BINx)	50			dB	range function activated
Signal/(Noise+Distortion) (sine wave 4.6 Vpp between AINx/BINx)	35			dB	range function activated
DC offset voltage			35	mV	range function deactivated
DC offset voltage			70	mV	range function activated
ADC gain	28	33	38	\%/V	range function deactivated
ADC gain	14	16.5	19	\%/V	range function activated
Attenuation of the range function	5.75	6	6.25	dB	
Impedance between AINx and BINx	100			$\mathrm{k} \Omega$	
Input capacitance at AINx and BINx			3	pF	
Input voltage range at AINx and BINx	GND		VDD		
Common Mode Rejection Ratio	40			dB	$\mathrm{f}<80 \mathrm{kHz}$
Power Supply Rejection Ratio	40			dB	$\mathrm{f}<80 \mathrm{kHz}$
Power Supply Rejection Ratio	55			dB	$80 \mathrm{kHz}<\mathrm{f}<20 \mathrm{MHz}$
Anti Alias Filter Corner Frequency	1.1	1.6	2.3	MHz	

3.2.2 Range Function

In case the signal input is too high (low attenuation on short loops), the range function can be activated. The range function attenuates the received signal internally by 6 dB . The range function is activated by setting the RANGE bit on SDX to ONE.

3.2.3 Digital-to-Analogue Converter

The output pulse is shaped by a special DAC. The DAC is optimized for excellent matching between positive and negative pulses and high linearity. It uses a fully differential switched capacitor approach. The staircase-like output signal of the DAC drives the output buffers. The shape of a DAC output signal is shown below, the peak amplitude is normalized to one. This signal is fed to an RC low pass of first order.

Figure 10

DAC Output for a Single Pulse

The duration of each pulse is 24 steps, with $t=0.78$ sec per step for 2B1Q code and 0.52 sec per step for 4B3T code. The pulse rate is one pulse per 16 steps, e.g. 80 kHz for 2B1Q code and 120 kHz for 4B3T code. Thus, the subsequent pulses are overlapping for a duration of 8 steps.
The output stage consists of two identical buffers, operated in a differential mode. The buffers are optimized for:

- high output swing
- high linearity
- low quiescent current to minimize power consumption

The pulse mask for a single +3 2B1Q-pulse measured between AOUTx and BOUTx at a load of 98Ω is given in figure 11:

Figure 11
Pulse Mask for a Single +3 Pulse (not to scale)
The pulse mask for $a+1$ pulse is obtained by dividing all voltages in figure 11 by 3. Negative pulses are described by the corresponding negative voltages.
The pulse as given in figure 11 is passing a sample and hold circuit and a first order RC low pass filter. The sample period is 0.78 s (2B1Q code) or 0.52 s (4B3T code). The switch is closed during $1 / 3$ of the sample period. Hence, during $2 / 3$ of the time, the output signal does not change. This way, a settling behavior is achieved which is slowed down by a factor of three compared to the cut-off frequency of the RC low pass filter.

Figure 12

Output Pulse Sample and Hold with Filter

The relative amplitudes of the single steps of the pulse are given below. Step numbers are as referred to in figure 10.

period after step no.	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
relative level	0	0.0625	0.1875	0.3125	0.4375	0.5625	0.6875	0.8125	0.9375

Steps 9 to 16 have a level of 1.0. The descending steps are defined as follows:

period after step no.	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$
relative level	0.9375	0.8125	0.6875	0.5625	0.4375	0.3125	0.1875	0.0625	0

Static tolerances of the step sizes are such that the pulse mask as given in figure 11 is provided. Dynamic tolerances are such that the nonlinearity values as given in table 6 are reached.

Table 6
Specified Data of the Digital-to-Analogue-Converter

Parameter	Limit Values			Unit	Test Condition
	min.	typ.	max.		
absolute peak voltage measured for a single +3 or -3 pulse between AOUTx and BOUTx	3.1	3.2	3.3	V	98Ω load between AOUTx and BOUTx
absolute peak voltage measured for a single +1 or -1 pulse between AOUTx and BOUTx	1.033	1.067	1.1	V	98Ω load between AOUTx and BOUTx
Common mode DC level	2.05	2.375	2.6	V	
Offset between AOUTx and BOUTx	-35.5		35.5	mV	
ratio between 1 and 3 symbols	0.3283	0.3333	0.3383		
Variation of the signal amplitude measured over a period of 1 min.			1	$\%$	

Technical Description

Table 6
Specified Data of the Digital-to-Analogue-Converter (cont'd)

Parameter	Limit Values			Unit	Test Condition
	min.	typ.	max.		
Peak-to-peak output jitter measured with a high-pass filter of 30 Hz cut-off frequency			1.3	nsec	jitter free 15.36 MHz clock
Peak-to-peak output jitter measured without the high-pass filter			6.5	nsec	
Signal / (Noise + Distortion) driving 98Ω in series with 6.8 V DC	26			dB	
Signal / (Noise + Distortion) driving 98Ω in series with 3.2 V DC	53			dB	
Signal / (Noise + Distortion) driving 98Ω in series with 0.5 V DC	63	68		dB	
Corner frequency of the DAC RC low pass filter	420	620	900	kHz	
Output Impedance AOUTx/ BOUTx	1	$\begin{array}{\|l\|} 2 \\ 6 \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 12 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	Power-Up Power-Down

The signal to noise plus distortion ratio is measured using an evenly distributed but otherwise random sequence of $+3,+1,-1,-3$ (2B1Q code) or $+1,0,-1$ (4B3T code) driving 98Ω in series with a DC voltage. The output signal at AOUT and BOUT has to be weighted with a low pass filter from 0 to 80 kHz (2B1Q code) or 120 kHz (4B3T code), respectively, to get the specified sum of noise and total harmonic distortion as given in table 6. Any linear mismatch between 3 and 1 symbols is cancelled for the S / N measurements.

3.2.4 External Hybrid and Transformer Parameters

For the 2B1Q-code and the 4B3T-code different external hybrids are suggested in figures 13 and 14. These hybrids will work correctly with an according transformer as described in table 7. Please note that table 7 gives typical transformer parameters and is not intended to be a complete transformer description. Transformer linearity must be such that no significant destortion is added to the signal passing the echo path from AOUT/BOUT to AIN/BIN.

Figure 13
Example of External Hybrid Circuit for 2B1Q Code

Figure 14
Example of External Hybrid Circuit for 4B3T Code

Table 7
Transformer Parameters

Parameter	Symbol	2B1Q	4B3T	Unit
Transformation ratio; Device side $:$ Line side	n	$1: 1.6$	$1: 1.32$	mH
Main inductance of windings on the line side	L_{H}	14.5	7.9	mH
Leakage inductance of windings on the line side	L_{S}	≤ 90	≤ 50	pF
Coupling capacitance between the windings on the device side and the windings on the line side	C_{K}	≤ 100	≤ 75	Ω
DC resistance of the windings on device side	$\mathrm{R}_{\mathrm{Cu}, \mathrm{B}}$	2.8	1.9	Ω
DC resistance of the windings on line side	$\mathrm{R}_{\mathrm{Cu}, \mathrm{L}}$	2.7	1.3	Ω

3.2.5 Analogue Loop-back Function

The loop-back bit (LOOP) set to ONE on SDX activates an internal analogue loop-back. This loop-back is closed near the U interface. Signals received on AINx / BINx will neither be evaluated nor recognized by the ADC. The output signal is attenuated by 17 dB and fed to the inputs of the ADC and level detect circuit instead. It is still available at AOUTx / BOUTx. Figure 15 shows a schematic of the loop-back function.

Figure 15
Block Diagram of Special Functions in the Quad IEC AFE

3.2.6 Level Detect

The level detect circuit evaluates the differential signal between AINx and BINx. Level detect is not affected by the range setting nor by the analog loop-back. It is also active during power down. The level detection is preceded by a first order low pass filter.
The detected level is communicated to the Quad IEC DFE on SDR. The detected level is updated every $12.5 \mu \mathrm{sec}(2 \mathrm{~B} 1 \mathrm{Q})$ or every $8.33 \mu \mathrm{sec}(4 \mathrm{~B} 3 \mathrm{~T})$. If the input signal exceeds the threshold once during this time, the level bit is set to ONE, otherwise it is set to ZERO. The level bit is repeated on SDR during the whole time slot associated with the corresponding line port.

Table 8
Specified Data of the Level Detection Circuit

Parameter	Limit Values			Unit
	min.	typ.	max.	
Cut-off frequency of the input filter	90	160	230	KHz
Threshold of level detect (2B1Q)	4		20	mV

Table 8
Specified Data of the Level Detection Circuit

Parameter	Limit Values			Unit
	min.	typ.	max.	
Threshold of level detect (4B3T)	10		30	mV
DC level of level detect (common mode level)	0		3	V

3.2.7 Power down

Transmit path, receive path and auxiliary functions of the analog line port are switched to a low power consuming mode when the power down function is activated. This implies the following:

- The ADC, the relevant pin PDMx is tied to GND.
- The DAC and the output buffer; the pins AOUTx BOUTx are tied to GND.
- The internal DC voltage reference is switched off. The VREFx pin stays at approximately 2.5 V
- The range and the loop functions are deactivated.

The digital interface, the PLL, and the level detection are not affected by the powerdown.

3.2.8 Power-on-Reset

When applying power to the Quad IEC AFE an internal power-on-reset is generated to reset the PLL/oscillator and to set CL15 to an input. CL15 remains an input until a clock signal is detected in the oscillator. As long as no 15.36 MHz master clock is detected the PLL control functions are switched off.

3.2.9 Reset

The reset is activated by setting pin RES to low. The following functions are reset:

- The reset activates the powerdown of all line ports.
- The synchronization of the digital interface is initialized.
- The data on SDX is ignored during reset.
- SDR is set to low
- The range and the loop functions of all line ports are deactivated
- The PLL is reset to it's nominal frequency and starts to resynchronize after 130 ns .

All settings are maintained until RES is high and the digital interface is synchronized.

3.3 Digital Interface

On the digital interface transmit and receive data is exchanged as well as control information for the start-up procedure. The ADC output is transferred to the Quad IEC

Technical Description

DFE T or Quad IEC DFE Q on the signals PDM1..PDM4. The timing of all signals in 2B1Q mode as well as 4B3T mode is based on the 15.36 MHz clock which is provided by the Quad IEC AFE.
The transmit data, powerup/down, range function and loopback are transferred on SDX, and the level status on SDR for all line ports. Eight time slots contain the data for up to eight line ports. Therefore two Quad IEC AFEs can share a single SDX signal. The slot selection pin ADDR determines the assignment of the time slots to the line ports. The allocation of these time slots is done by the ninth time slot, a 24 bit synch. word on SDX, that consists of all ZEROs. The other time slots with transmission data start with a ONE. Therefore the first ONE after at least 24 subsequent ZEROs must be the first bit of time slot no. 0 . This information is also used to determine the status of synchronization of the digital interface after reset.
Table 9
Assignments of Time-Slots on SDX/SDR to Line Ports

Time-Slot No. (ADDR low)	Time-Slot No. (ADDR High)	Line Port No.
0	1	1
2	3	2
4	5	3
6	7	4

The code independent data on SDX:
NOP: The no-operation-bit is set to ZERO if none of the control bits (PDOW, RANGE and LOOP) shall be changed. The values of the control bits of the assigned line port is latched. The states of the control bits on SDX are ignored, they should be set to ZERO to reduce any digital cross-talk to the analog signals.
The NOPQ bit is set to ONE if at least one of the control bits shall be changed. In this case all control bits are transmitted with their current values.

PDOW: If the PDOW bit is set to ONE, the assigned line port is switched to powerdown. Otherwise it is switched to powerup.
RANGE: RANGE = ONE activates the range function, otherwise the range function is deactivated. "Range function activated" refers to high input levels.
LOOP: \quad LOOP $=$ ONE activates the loop function, i.e. the loop is closed. Otherwise the line port is in normal operation.
SY: \quad First bit of the time slots with transmission data. For synchronization and bit allocation on SDX and SDR, SY is set to ONE.
" 0 ": reserved bit. Reserved bits are currently not defined and shall be set to ZERO. Some of these bits may be used for test purposes or can be assigned a function in later versions.

3.3.1 Frame structure on the Digital Interface in the 2B1Q Mode

The 192 available bits during a 80 kHz period (related to the 15.36 MHz clock) are divided into the 9 slots of which 8 slots are 21 bits long used for data transmission. The status on SDR is synchronized to SDX. Each time slot on SDR carries the corresponding LD bit during the last 20 bits of the slot.

Figure 16

Frame Structure on SDX and SDR in 2B1Q Mode

The 2B1Q data is coded with the bits TD2, TD1, TD0:
Table 10
Coding of the 2B1Q data (AOUT/BOUT)

2B1Q Data	TD2	TD1	TD0
0	"1"	"don't care"	"don't care"
-3	0	0	0
-1	0	0	1
+3	0	1	0
+1	0	1	1

The NT-mode is set if the NT-bit on all four slots is „1". LT-mode then is only set again with a low on pin RES. If the NT-Mode is set, the TD2, TD1 and TD0 bits on SDX are „don't care". The transmit data enters the device as a 80 kHz clock that determines the transmit clock. The data itself is coded onto this clock via the pulse width.

3.3.2 Frame structure on the Digital Interface in the 4B3T mode

The 128 available bits during a 120 kHz period (related to the 15.36 MHz clock) are divided into 9 slots of which 8 slots are 13 bits long used for data transmission. The status on SDR is synchronized to SDX. Each time slot on SDR carries the corresponding LD bit during the last 12 bits of the slot.

Figure 17
Frame Structure on SDX/SDR in 4B3T Mode
The 4B3T data is coded with the bits TD1, TD0:
Table 11
Coding of the 4B3T data pulse (AOUT/BOUT)

4B3T Data Pulse	TD1	TD0
0	0	0
+1	1	0
-1	1	1

3.3.3 Propagation Delay in transmit direction

The start of the transmit pulse is defined as given in fig.18:

Figure 18

Definition of Transmit Pulse Start

The delay in transmit direction depends on the slot x on SDX. The pulses on the four lines are equally spaced in time while the transmit bits on SDX are not. The delay is defined as the time from the end of last bit of the slot x on SDX until the start of the pulse at AOUT/BOUT as given in figure 18 . The delay is $(3 x+27) * 65 \mathrm{~ns}$.

3.4 NT-Mode Operation

The NT-Mode is provided in conjunction with the PEB 24911 Quad IEC DFE-Q V2.1. It is set by the Quad IEC DFE-Q via the NT-bit on the serial interface (see fig. 16). Note that there is no NT bit defined for the 4B3T case as the PEB 24901 Quad IEC DFE-T does not support the NT-Mode. If the NT-bit is set to "1", the bits TD2, TD1, and TDO on SDX are not taken into account. The transmit clock is not generated from the frame on SDX. The transmit data and transmit clock are passed to the Quad IEC AFE via the XDNi pins ($\mathrm{i}=1 . .4$ being the port no.) as follows:
The transmit clock is fed in at XDNi individually for each line port. The average period of the transmit clock is $12.5 \mu \mathrm{~s}$, which equals 19215.36 MHz periods. In order to synchronize the upstream data to the receive data stream, the transmit clock period may be shorter or longer than 19215.36 MHz periods. The start time of the transmit pulse is not fixed as in the LT mode. It is individually tied to the transmit signal of the different line ports. The begin of the transmit pulse at AOUT/BOUT is 5015.36 MHz periods $=3.26 \mu \mathrm{~s}$ after the rising edge of the signal at XDNi.
The data is coded via the pulse width onto the transmit clock:

Table 12
Coding of the 2B1Q data (AOUT/BOUT) in the NT-mode

2B1Q Data	high time (no. of 15.36 MHz periods
0	37
-3	5
-1	13
+3	21
+1	29

Figure 19
Coding of the Transmit Signal in NT-Mode (not to scale)

3.5 Boundary Scan Test Controller

The Quad IEC AFE provides a boundary scan support for a cost effective board testing. It consists of:

- Complete boundary scan for 11 signals (pins) according to IEEE Std. 1149.1 specification.
- Test access port controller (TAP)
- Four dedicated pins (TCK, TMS, TDI, TDO)
- One 32-bit IDCODE register
- pin TDISS tied to low disables the complete Boundary Scan Test Controller

Boundary Scan

The following pins are included in the boundary scan:
ADDR, CL15, CLOCK, CODE, PDM1, PDM2, PDM3, PDM4, RES, SDR, SDX
Depending on the pin functionality one, two or three boundary scan cells are provided.
Table 13

Pin Type	Number of Boundary Scan Cells	Usage
Input	1	input
Output	2	output, enable
I/O	3	input, output, enable

When the TAP controller is in the appropriate mode data is shifted into or out of the boundary scan via the pins TDI/TDO using the 6.25 MHz clock on pin TCK.

The pins are included in the following sequence in the boundary scan:

Table 14

Boundary Scan Number TDI \longrightarrow	Pin Number	Pin Name	Type	Number of Scan Cells	Default value TDI $->$
1	7	CL15	I/O	3	000
2	8	PDM4	O	2	10
3	23	CODE	I	1	0
4	24	SDX	I	1	0
5	25	RES	I	1	0
6	26	CLOCK	I	1	0
7	27	ADDR	I	1	0

Technical Description
Table 14

Boundary Scan Number TDI \longrightarrow	Pin Number	Pin Name	Type	Number of Scan Cells	Default value TDI \longrightarrow
8	38	PDM1	O	2	00
9	39	PDM2	O	2	00
10	40	PDM3	O	2	10
11	41	SDR	O	2	01

TAP Controller

The Test Access Port (TAP) controller implements the state machine defined in the JTAG standard IEEE Std. 1149.1. Transitions on the pin TMS cause the TAP controller to perform a state change.
Following the standard definition 7 instructions are executable.

TAP controller instructions:
Table 15

Code	Instruction	Function
000	EXTEST	External testing
001	INTEST	Internal testing
010	SAMPLE/PRELOAD	Snap-shot testing
011	IDCODE	Reading ID code
100	CLAMP	Reading outputs
101	HIGHZQ	Z-State of all boundary scan output pins
$11 X$	BYPASS	Bypass operation

EXTEST is used to examine the board interconnections.
When the TAP controller is in the state "update DR", all output pins are updated with the falling edge of TCK. When it has entered state "capture DR" the levels of all input pins are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD.

Technical Description
INTEST supports internal chip testing.
When the TAP controller is in the state "update DR", all inputs are updated internally with the falling edge of TCK. When it has entered state "capture DR" the levels of all outputs are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD.
Note: 001 (INTEST) is the default value of the instruction register.

SAMPLE/PRELOAD provides a snap-shot of the pin level during normal operation or is used to preload (TDI) / shift out (TDO) the boundary scan with a test vector. Both activities are transparent to the system functionality.

IDCODE Register

The 32-bit identification register is serially read out via TDO. It contains the version number (4 bits), the device code (16 bits) and the manufacturer code (11 bits). The LSB is fixed to "1".

Version	Device Code	Manufacturer Code	Output	
0001	0000000000100110	00001000001	1	$-->$ TDO

Note: Note:In the state "test logic reset" the code "0011" is loaded into the instruction code register.

BYPASS, a bit entering TDI is shifted to TDO after one TCK clock cycle, e.g. to skip testing of selected ICs on a printed circuit board.

HIGHZQ sets all pins included to the boundary scan path into a high impedance state. In this state, an in-circuit test system may drive signals onto these pins.

CLAMP allows the state of the signals included in the boundary scan driven from the PEB 24902 to be determined from the boundary scan register while the bypass register is selected as the serial path between TDI and TDO. These signals will not change while CLAMP is selected.

Digital Interface

4 Digital Interface

Unless otherwise specified, the static and dynamic limits apply over a supply voltage range from 4.75 to 5.25 V and over the temperature range as specified in section 7.2.

4.1 Static Requirements

Table 16

Static Characteristics

Parameter	Symbol	Limit Values			Unit	$\begin{array}{l}\text { Test } \\ \text { Condition }\end{array}$
		min.	typ.	max.		

4.2 Dynamic Requirements

Figure 20
Dynamic Input and Output Requirements at the Digital Interface
Table 17
Dynamic Input Characteristics

Parameter	Signal	Symbol	Limit Values			Unit
			min.	typ.	max.	
Clock rise / fall time	CL15	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			15	ns
Clock period	CL15	t_{cw}		65		ns
Pulse width high / low	CL15	t_{h} t_{f}	20 20			ns
Data rise / fall time	SDX XDN1..4	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			20	ns
Data setup	SDX XDN1..4	t_{ds}	5			ns
Data hold	SDX XDN1..4	t_{dh}	10			ns

Note: There is no value specified for t_{ds} or for t_{dh} of the signal at XDN1..4.

Digital Interface

Table 18
Dynamic Output Characteristics

Parameter	Signal	Symbol	Limit Values			Unit
			min.	typ.	max.	
Clock rise / fall time	CL15	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			10	ns
Clock period ${ }^{1 /}$	CL15	t_{cw}		65		ns
Pulse width ${ }^{1)}$ high / low	CL15	$\begin{aligned} & \mathrm{t}_{\mathrm{h}} \\ & \mathrm{t}_{1} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Data delay	PDM, SDR	t_{D}			20	ns

1) This specification is only applicable in case of the usage of the internal PLL/oscillator or if a sinusoidal clock is provided at XIN. It is valid 1 ms after power on (free running mode).

4.3 Boundary Scan Timing

Figure 21

Boundary Scan Timing

Digital Interface

Parameter	Symbol	Limit Values		Unit
		min.	max.	
test clock period	$\mathrm{t}_{\mathrm{TCP}}$	160	-	ns
test clock period low	$\mathrm{t}_{\mathrm{T} C P L}$	70	-	ns
test clock period high	$\mathrm{t}_{\text {TCPH }}$	70	-	ns
TMS set-up time to TCK	$\mathrm{t}_{\text {MSS }}$	30	-	ns
TMS hold time from TCK	$\mathrm{t}_{\text {MSH }}$	30	-	ns
TDI set-up time to TCK	$\mathrm{t}_{\mathrm{DIS}}$	30	-	ns
TDI hold time from TCK	$\mathrm{t}_{\text {DIH }}$	30	-	ns
TDO valid delay from TCK	$\mathrm{t}_{\mathrm{DOD}}$	-	60	ns

5 Power Supply

5.1 Supply Voltages

$$
\begin{array}{ll}
\mathrm{VDD}_{\mathrm{d} 1} \text { to } \mathrm{GND}_{\mathrm{d} 1} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V} \\
\mathrm{VDD}_{\mathrm{d} 2} \text { to } \mathrm{GND}_{\mathrm{d} 2} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V} \\
\mathrm{VDD}_{\mathrm{a} 1} \text { to } \mathrm{GND}_{\mathrm{a} 1} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V} \\
\mathrm{VDD}_{\mathrm{a} 2} \text { to } \mathrm{GND}_{\mathrm{a} 2} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V} \\
\mathrm{VDD}_{\mathrm{a} 3} \text { to } \mathrm{GND}_{\mathrm{a} 3} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V} \\
\mathrm{VDD}_{\mathrm{a} 4} \text { to } \mathrm{GND}_{\mathrm{a} 4} & =+5 \mathrm{~V} \pm 0,25 \mathrm{~V}
\end{array}
$$

5.2 Power Consumption

All measurements with random $2 \mathrm{~B}+\mathrm{D}$ data in active states, $5 \mathrm{~V}\left(0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)$
Table 19
Power Consumption

Parameter	Symbol	Limit Values			Unit	Comment
		min.	typ.	max.		
98Ω load at AOUTx/BOUTx (2B1Q mode)			820	900	mW	all line ports are in power up
135Ω load at AOUTx/BOUTx (4B3T mode)			720	800	mW	all line ports are in power up
98Ω load at AOUTx/BOUTx (2B1Q mode)			235	270	mW	one line port is in power up
135Ω load at AOUTx/BOUTx (4B3T mode)			210	245	mW	one line port is in power up
All inputs are tied to $V_{D D}$ or GND			40	60	mW	all line ports are in power-down

6 Maximum ratings

Stresses above those listed in table 20 may cause permanent damage to the device. Exposure to conditions beyond those indicated in section 5.1 of this specification may affect device reliability.
This is a stress rating only and functional operation of the device under these conditions or at any other condition beyond those indicated in the operational conditions of this specification is not implied. It is not implied, that more than one of these conditions can be applied simultaneously.

Table 20
Maximum ratings

Parameter	Limit Values		Unit
	min.	max.	
positive Supply Voltage		7.0	V
Voltage applied at any input	-0.3	VDD +0.3 max. 7.0	V
Voltage applied at at the line port outputs	-0.3	VDD +0.3 max. 7.0	V
Voltage between GNDx to any other GNDx		0.3	V
Voltage between VDDx to any other VDDx		0.3	V
Maximum surge Voltage applied at the line		ESD hardness port inputs	
according to MIL-Standard $883 d \quad$ Method			

6.1 Line Overload Protection

The maximum input current (under over-voltage conditions) is given as a function of the width of a rectangular input current pulse. For the destruction current limits refer to figure 22:

Figure 22
Maximum Line input current

Environmental Requirements

7 Environmental Requirements

7.1 Storage and Transportation

The rated (limited capability) storage and transportation temperature range prior to printed board assembly shall be as follows:

- 65 to $+150^{\circ} \mathrm{C}$ (without supply voltage)

7.2 Operating Ambient

The operating ambient temperature for standard and extended temperature versions shall be within the limits as follows:
PEB $24902 \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} \quad$ (standard version)
PEF $24902-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad$ (extended temperature range version)

7.3 Thermal Contact Resitance

$R_{\text {THU }}$ (silicon -environment): 55 Kelvin/Watt

8

Package Outlines

Plastic Package, P-MQFP-64
(Plastic Metric Quad Flat Package)

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".
SMD = Surface Mounted Device
Dimensions in mm

